Развивающие задачи на уроках математики

В процессе изучения математики развивается математическое мышление. Ему свойственны качества присущие научному мышлению. В исследованиях Ю. Н. Колягина, это:

1. Гибкость мышления - способность к целесообразному варьированию способов действия; легкость перестройки системы знаний, умений и навыков при изменении условий действия; легкость перехода от одного способа действия к другому, умение выходить за границы привычного способа действия.

2. Активность мышления - постоянство усилий, направленных на решение некоторой проблемы, желание обязательно решить эту проблему, изучить различные подходы к ее решению, исследовать различные варианты постановки этой проблемы в зависимости от изменяющихся условий и т. д.

3. Организованность памяти.

4. Широта мышления - способность к формированию обобщенных способов действий, имеющих широкий диапазон переноса и применения к частным, нетипичным случаям.

5. Глубина мышления - способность глубокого понимания каждого из изучаемых математических фактов в их взаимосвязи с другими фактами.

6. Критичность мышления - умение оценить правильность выбранных путей решения проблемы и получаемые при этом результаты с точки зрения их достоверности, значимости. В процессе обучения математике воспитанию этого качества у учащихся способствует постоянное обращение к различного вида проверкам, грубым прикидкам найденного результата, а также к проверке умозаключений, сделанных с помощью индукции, аналогии и интуиции.

Необходимо развивать у школьников особые формы проявления математического мышления.

1. Логическое мышление. Оно характеризуется умением выводить следствия из данных предпосылок, вычленять частные случаи из некоторого общего положения, теоретически предсказывать конкретные результаты, обобщать полученные выводы и т. п. Логическое мышление проявляется и развивается у учащихся, прежде всего, в ходе различных математических выводов: индуктивных и дедуктивных, при доказательстве теорем, обосновании решения задачи по математике и т. д.

2. Функциональное мышление, характеризуемое осознанием динамики общих и частных соотношений между математическими объектами или их свойствами, ярко проявляется в связи с изучением одной из ведущих идей школьного курса математики - идеи функции.

3. Пространственное воображение. Сформированность пространственного воображения характеризуется умением мысленно конструировать пространственные образы или схематические модели изучаемых объектов и выполнять над ними различные операции.

4. Интуитивное мышление. Опытный учитель всегда уделяет должное внимание развитию у школьников сообразительности, способности к догадке.